

Technical Brochure

LTG Air-Water Systems

LTGInduction

Induction Units HFB

Installation in access floors

Induction Units for Installation in Access Floors Type HFB-N, HFB

Application

The Induction Units Type HFB are 2-pipe or 4-pipe units for ventilating, heating and/or cooling occupied zones (perimeter zones) with varying loads and transient load changes.

The unit is ideal for installation in access floors with a recommended clearance of 200 to 300 mm.

Since all the components are below floor level the Induction Units HFB may also be used with full height facade glazing.

Induction Unit for installation in access floors, Type HFB-D (illustration unit open - special version with 2 sockets)

Mode of Operation

The primary air (processed fresh air from the main plant), is led through a detachable nozzle box with replaceable nozzles (only in case of plastic nozzles).

The primary air jets induce a larger secondary air flow of room air in which is drawn across a flat heat exchanger. After a 90° deflection, the mixed air flow is expelled into the room in a vertical direction close to the facade via a ventilation grille on the floor.

In summer, this supply air mixes with the heated room air in front of the facade, in winter with the descending cold air close to the window (mixed air flow close to the facade).

In the cooling mode, the supply air, having passed the mixing air zone, passes through the room in by displacement.

The unit may be used as an underfloor convector for heating the room whenever the ventilation or air conditioning plant is isolated.

Versions

The LTG induction unit for installation in access floors type HFB is available in two versions:

- HFB-Z

with two-row heat exchanger for high caloric output with high primary air volume

- HFB-D

with three-row heat exchanger for high caloric output with low primary air volume

Both versions are available in identical lengths and grille widths.

Advantages

• Flexible use

- Thanks to the modular design, the unit may be progressively converted according to user requirements from a pure floor convector for heating to mechanical ventilation to a 4-pipe induction unit including cooling.

• Low energy consumption

- Low air plant operating costs due to operation at low initial pressure.
- Large-surface heat exchanger ensures a high natural convection capacity in the heating mode.

• High comfort

- High comfort in the cooling mode thanks to a combined mixed air/displacement air flow.
- Excellent shielding of floor-to-ceiling glass surfaces during winter.

Acoustics

- Very low sound power level.
- No cross-talk sound transmission into adjacent rooms via the access floor.

Maintenance

- Easy maintenance and cleaning thanks to good access and doing without movable parts.

Installation

- Separate installation of A/C unit, facade and double floor.
- Fast/Easy retrofitting and conversion due to modular design.

Induction Unit for installation in access floors, Type HFB with aluminium grille

Tolerances

- For the dimensions given in this brochure, the General Tolerances according to DIN 7168-sg apply. For the outlet grille,the Special Tolerances stated in the drawing apply.
- Straightness and Twist Tolerances according to DIN 17615 Part 3.

Finish

- The surface finish is designed to meet the requirements for applications in buildings - room climate according to DIN 1946 Part 2. Other requirements on request.

© LTG Aktiengesellschaft · Grenzstraße 7 · D-70435 Stuttgart · 🕿 +49 (0711) 8201-180 · Fax -720 Internet: http://www.LTG-AG.de · E-Mail: info@LTG-AG.de · Printed in Germany · Former editions are invalid · Subject to technical modifications.

Induction Unit for Installation in Access Floors Type HFB-D Dimensions

heating water inlet

heating water return
Isometric picture

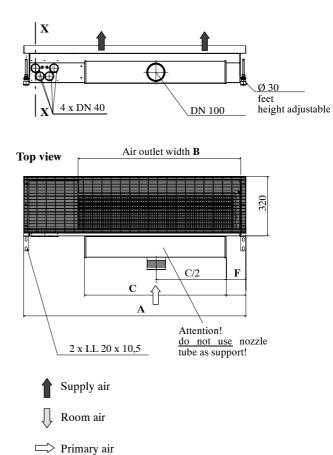


Illustration: Version with aluminium grille

Induction unit type HFB-D

G adjustable +50 mm

Tacade side

Cross-section X-X

Size	Α	В	С	F
630	988	626	593	40
800	1198	856	763	95
1000	1398	1056	963	95
1250	1598	1256	1163	95

Version:	Е	Н	Ι	\mathbf{G}_{\min}
stainless steel grille:	305	44	55	187
aluminium roller grille:	308	48	59	191
aluminium grille:	308	48	59	191

Induction Unit for Installation in Access Floors Type HFB-D Technical Specifications

Size 630

V _P [m ³ /h]	Δp [Pa]	$\begin{bmatrix} L_{A18}^{4)} \\ [dB(A)] \end{bmatrix}$	$\begin{bmatrix} L_{wA}^{4)} \\ [dB(A)] \end{bmatrix}$	${f Q_P}/\Delta t_P \ [W/K]$	$ \begin{array}{c} \mathbf{Q_k} / \Delta t^{1)} \\ [W/K] \end{array} $	$\frac{Q_h}{\Delta t}$ [W/K]	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	Q _P ² [W]
35	150	21	27	12	17	10				170	120
35	250	22	28	12	20	12				200	120
45	150	24	30	15	21	13				210	150
45	250	26	32	15	26	16				260	150
60	150	26	32	20	28	18	100	100/1 2	100/1 0	280	200
60	250	28	34	20	33	20	180	100/1.2	100/1.8	330	200
80	150	28	34	27	32	20				320	270
80	250	33	39	27	36	22				360	270
100	150	31	37	33	34	21				340	330
100	250	33	39	33	39	24				380	330
Size 8											
V _P [m ³ /h]	∆p [Pa]	$\frac{L_{A18}^{4)}}{[dB(A)]}$	$L_{wA}^{4)}$ [dB(A)]	$\frac{\mathbf{Q}_{\mathbf{P}}}{[W/K]}$	$Q_k/\Delta t^{1)}$ [W/K]	$Q_h/\Delta t$ [W/K]	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	
		L _{A18} ⁴⁾ [dB(A)] 22	L _{wA} ⁴⁾ [dB(A)] 28				Q _{Ek} ³⁾ [W]			Q _k ¹ [W] 250	Q _P ² [W] 150
[m ³ /h]	[Pa]	[dB(A)]	[dB(A)]	[W/K]	[W/K]	[W/K]	Q _{Ek} ³⁾ [W]			[W]	[W]
[m ³ /h] 45	[Pa] 150	[dB(A)] 22	[dB(A)] 28	[W/K] 15	[W/K] 25	[W/K] 15	Q _{Ek} ³⁾ [W]			[W] 250	[W] 150
$\frac{[m^{3/h}]}{45}$	[Pa] 150 250	[dB(A)] 22 23	[dB(A)] 28 29	[W/K] 15 15	[W/K] 25 31	[W/K] 15 19	Q _{Ek} ³⁾ [W]			[W] 250 310	[W] 150 150
$\frac{[m^{3/h}]}{45}$ $\frac{45}{60}$	[Pa] 150 250 150	[dB(A)] 22 23 24	[dB(A)] 28 29 30	[W/K] 15 15 20	[W/K] 25 31 34	[W/K] 15 19 20	[W]	[kg/h]/[kPa]	[kg/h]/[kPa]	[W] 250 310 340	150 150 200
$ \begin{bmatrix} m^{3}/h \end{bmatrix} 45 45 60 60 $	[Pa] 150 250 150 250	[dB(A)] 22 23 24 25	[dB(A)] 28 29 30 31	[W/K] 15 15 20 20	[W/K] 25 31 34 39	[W/K] 15 19 20 24	Q _{Ek} ³⁾ [W] 225			[W] 250 310 340 390	[W] 150 200 200
[m ³ /h] 45 45 60 60 80	[Pa] 150 250 150 250 150	[dB(A)] 22 23 24 25 26	[dB(A)] 28 29 30 31 32	[W/K] 15 15 20 20 27	[W/K] 25 31 34 39 38	[W/K] 15 19 20 24 23	[W]	[kg/h]/[kPa]	[kg/h]/[kPa]	[W] 250 310 340 390 380	[W] 150 200 200 270
[m ³ /h] 45 45 60 60 80 80	[Pa] 150 250 150 250 150 250	[dB(A)] 22 23 24 25 26 30	[dB(A)] 28 29 30 31 32 36	[W/K] 15 15 20 20 27 27	[W/K] 25 31 34 39 38 43	[W/K] 15 19 20 24 23 26	[W]	[kg/h]/[kPa]	[kg/h]/[kPa]	[W] 250 310 340 390 380 430	[W] 150 200 200 270 270
[m ³ /h] 45 45 60 60 80 80 100	[Pa] 150 250 150 250 150 250 150	[dB(A)] 22 23 24 25 26 30 29	[dB(A)] 28 29 30 31 32 36 35	[W/K] 15 15 20 20 27 27 27 33	[W/K] 25 31 34 39 38 43 40	[W/K] 15 19 20 24 23 26 25	[W]	[kg/h]/[kPa]	[kg/h]/[kPa]	[W] 250 310 340 390 380 430 400	[W] 150 200 200 270 270 330

²⁾ Primary air temperature: 16°C, air inlet temperature: 26°C

- ³⁾ Water supply temperature 70°C, air inlet temperature: 20°C
- 4) Acoustical data for plastic nozzles; aluminium nozzles: sound power level + 3 dB

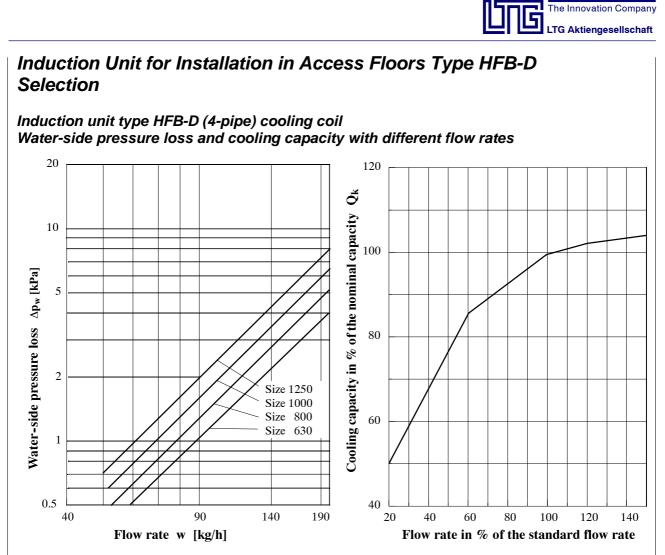
V _P - primary air flow rate	$(\pm 10\%)$
---	--------------

- Δp static pressure of primary air
- L_{A18} sound pressure level
 - at a room absorption of 18 m² Sabine
- L_{wA} sound power level ±3 dB(A) (with plastic nozzles)
- Q_P cooling capacity primary air
- Δt_P temperature difference between ambient air and primary air
- Q_k secondary cooling capacity (heat exchanger)
- Q_h heating capacity

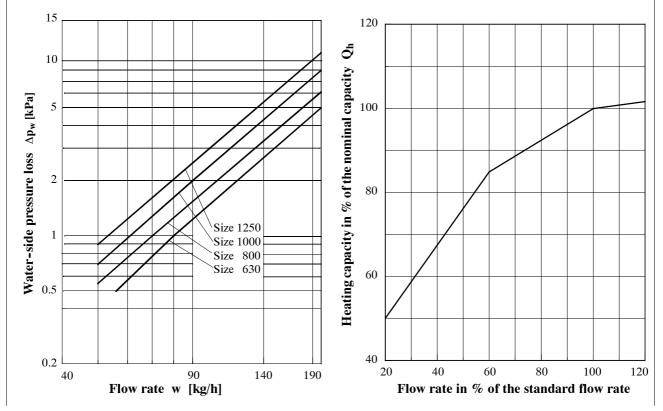
- $Q_{Ek}\;$ heating capacity by natural convection
- w_{ok} standard water flow rate (cooling)
- w_{oh} standard water flow rate (heating)
- Δp_w water-side pressure loss

Induction Unit for Installation in Access Floors Type HFB-D Technical Specifications

V _P [m ³ /h]	Δp [Pa]	L _{A18} ⁴⁾ [dB(A)]	$\frac{L_{wA}^{4)}}{[dB(A)]}$	${f Q_P}/\Delta t_P \ [W/K]$	$\begin{bmatrix} \mathbf{Q}_{\mathbf{k}} / \Delta t^{1} \\ [W/K] \end{bmatrix}$	$\frac{Q_h}{\Delta t}$ [W/K]	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	Q _P ² [W]
60	150	22	28	20	40	24				400	200
60	250	24	30	20	47	28				470	200
80	150	26	32	27	46	27				460	270
80	250	29	35	27	52	31				510	270
100	150	28	34	33	50	30	290	150/4	150/4 6	500	330
100	250	31	37	33	55	33	280	150/4	150/4.6	550	330
120	150	30	36	40	53	32				530	400
120	250	33	39	40	58	35				580	400
140*	150	32	38	47	56	33				560	470
140*	250	35	41	47	60	36				600	470
Size 1	250										
V _P [m ³ /h]	∆p [Pa]	L _{A18} ⁴⁾ [dB(A)]	$\frac{L_{wA}^{4)}}{[dB(A)]}$	${f Q_P}/{\Delta t_P} \ [W/K]$	$\begin{array}{c} Q_k/\Delta t^{1)} \\ [W/K] \end{array}$	$\frac{Q_h/\Delta t}{[W/K]}$	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	Q _P ² [W]
80	150	25	31	27	53	32				530	270
80	250	28	34	27	58	35		180/5.8	180/7.5	580	270
100	150	27	33	33	57	34				570	330
100	250	30	36	33	61	37				610	330
120	150	30	36	40	62	38	245			620	400
120	250	32	38	40	67	41	345			670	400
140*	150	31	37	47	68	42				680	470
140*	250	34	40	47	71	44				710	470
160*	150	35	40	53	73	45				730	530
160*	250	36	43	53	76	47				760	530
non 2) Prin 3) Wat 4) Acc	-cond nary a ter sup oustica	lensing op air temper oply temp al data for	peration (i cature: 16 [°] perature 70 r plastic no	6°C, induction nduction air te °C, air inlet ter 0°C, air inlet ter ozzles; alumin ow rates will r	emperature mperature: emperature ium nozzle	may var 26°C e: 20°C es: sound	y from an power le	nbient air tem		о°С,	
101			ow rate (\exists		equite 2 pi	Δt		erature differe	nce between		
Vn -	-	-	e of prima	<i>,</i>			induc	tion air tempe at exchanger	rature before		ıg
∆р -		d pressur	e level						natural convection		
∆р -	soun	d pressur room abs	e level orption of	18 m ² Sabine							
∆p - L _{A18} -	• soun at a : • soun	room abso d power l	orption of level $\pm 3 c$			Wok	- standa	ard water flow	rate (cooling	()	
Δp - L _{A18} - L _{wA} -	• soun at a • soun (with	room abs d power l h plastic r	orption of level $\pm 3 c$	lB(A)		W _{ok} W _{oh}	- standa - standa		rate (cooling rate (heating	()	

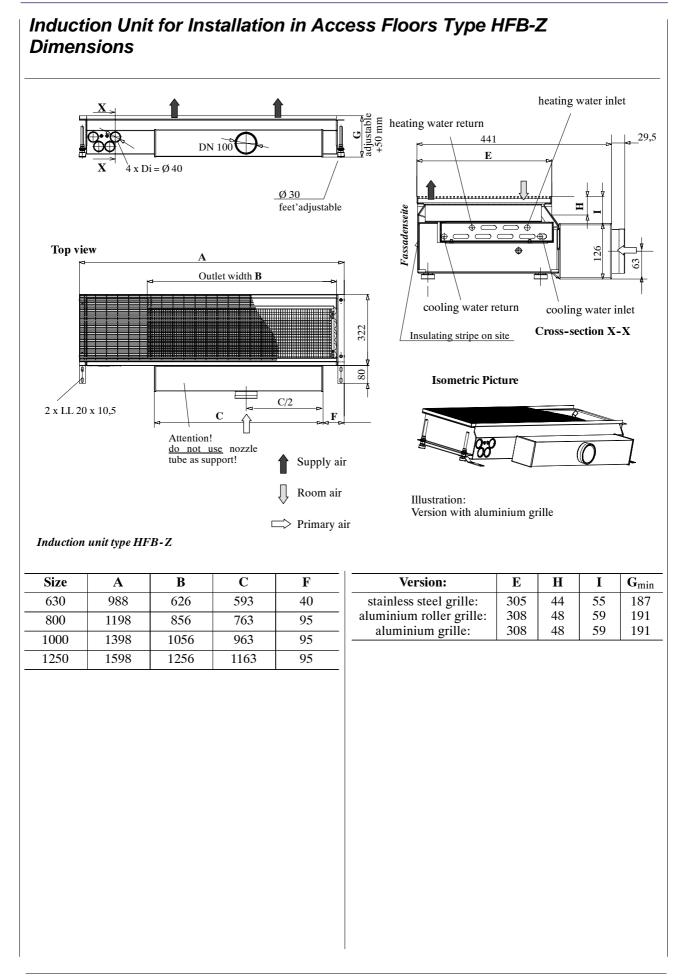

ambient air and primary air

- secondary cooling capacity (heat exchanger)


- heating capacity

 Q_k

Qh


Induction unit type HFB-D (4-pipe) heating coil Water-side pressure loss and heating capacity with different flow rates

© LTG Aktiengesellschaft · Grenzstraße 7 · D-70435 Stuttgart · € +49 (0711) 8201-180 · Fax -720 Internet: http://www.LTG-AG.de · E-Mail: info@LTG-AG.de · Printed in Germany · Former editions are invalid · Subject to technical modifications.

Bodenind-E-TP (09/07)

Induction Unit for Installation in Access Floors Type HFB-Z **Technical Specifications**

Size 630

V _P [m ³ /h]	Δp [Pa]	$\frac{L_{A18}^{4)}}{[dB(A)]}$	$\begin{array}{c} L_{wA}{}^{4)}\\ [dB(A)] \end{array}$	${f Q_P}/\Delta t_P \ [W/K]$	$\begin{array}{c} Q_k/\Delta t^{1)} \\ [W/K] \end{array}$	$\frac{Q_h/\Delta t}{[W/K]}$	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	$\begin{bmatrix} Q_k^1 \\ [W] \end{bmatrix}$	Q _P ² [W]
35	150	< 22	< 28	12	16	13				160	120
35	250	<22	< 28	12	18	15				180	120
45	150	<22	26	15	17	15				170	150
45	250	23	29	15	20	17				200	150
60	150	24	30	20	22	19	165	100/3	100/2	220	200
60	250	27	33	20	25	21	105	100/5	100/2	250	200
80	150	28	34	27	29	25				290	270
80	250	30	36	27	33	28				330	270
100	150	33	39	33	35	30				350	330
100	250	35	41	33	39	34				390	330
$\frac{\mathbf{V}_{\mathbf{P}}}{[m^{3}/h]}$	∆p [Pa]	L _{A18} ⁴⁾ [dB(A)]	$\frac{L_{wA}^{4)}}{[dB(A)]}$	${f Q_P}/{\Delta t_P}$ [W/K]	$\begin{array}{c} Q_k/\Delta t^{1)} \\ [W/K] \end{array}$	$\frac{Q_h/\Delta t}{[W/K]}$	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	Q р ² [W]
[m ³ /h]		[dB(A)]	[dB(A)]								[W]
45	150	< 20	23	15	19	16				190	150
45	250	< 20	25	15	23	19				230	150
45 60	250 150	<20	25 25	15 20	23 25	19 21				230 250	150 200
60	150	< 20	25	20	25	21	210	120/5	120/3.3	250	200
60 60	150 250	< 20 22	25 28	20 20	25 29	21 25	210	120/5	120/3,3	250 290	200 200
60 60 80	150 250 150	< 20 22 23	25 28 29	20 20 27	25 29 33	21 25 28	210	120/5	120/3,3	250 290 330	200 200 270
60 60 80 80	150 250 150 250	<20 22 23 27	25 28 29 33	20 20 27 27	25 29 33 38	21 25 28 32	210	120/5	120/3,3	250 290 330 380	200 200 270 270
60 60 80 80 100	150 250 150 250 150	<20 22 23 27 28	25 28 29 33 34	20 20 27 27 33	25 29 33 38 40	21 25 28 32 34	210	120/5	120/3,3	250 290 330 380 400	200 200 270 270 330

Water supply temperature: 16°C, induction air temperature before entering the heat exchanger: 26°C, non-condensing operation (induction air temperature may vary from ambient air temperature)

²⁾ Primary air temperature: 16°C, air inlet temperature: 26°C

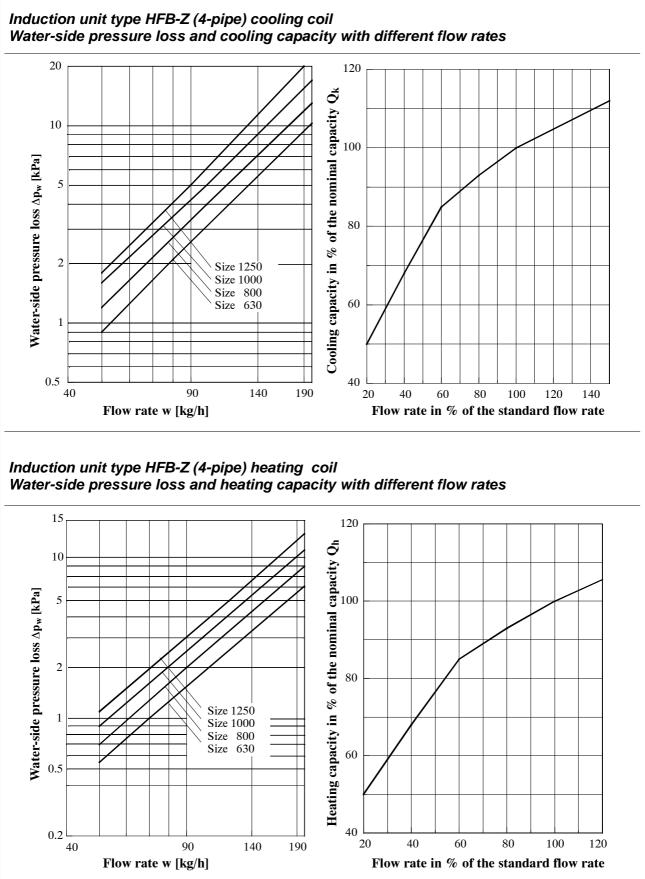
³⁾ Water supply temperature 70°C, air inlet temperature: 20°C

4) Acoustical data for plastic nozzles; aluminium nozzles: sound power level + 3 dB

VP	- primary air flow rate ($\pm 10\%$)
Δp	- static pressure of primary air
LA18	- sound pressure level

- at a room absorption of 18 m² Sabine L_{wA} - sound power level ±3 dB(A)
- (with plastic nozzles)
- cooling capacity primary air Qp
- temperature difference between $\Delta t_{\mathbf{P}}$ ambient air and primary air
- secondary cooling capacity Qk (heat exchanger)
- Qh - heating capacity

- Δt - temperature difference between induction air temperature before entering the heat exchanger and water supply
- Q_{Ek} heating capacity by natural convection
- wok standard water flow rate (cooling)
- standard water flow rate (heating) Woh
- $\Delta \mathbf{p}_{\mathbf{w}}$ water-side pressure loss


Induction Unit for Installation in Access Floors Type HFB-Z Technical Specifications

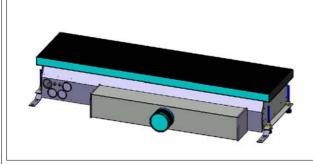
V _P [m ³ /h]	Δp [Pa]	$\frac{L_{A18}^{4)}}{[dB(A)]}$		Q _P /Δ t _P [W/K]	$ \begin{array}{ c c } Q_k/\Delta t^{1)} \\ [W/K] \end{array} $	$\begin{array}{c} \mathbf{Q_h}/\Delta t\\ [\mathrm{W/K}] \end{array}$	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	$w_{oh} / \Delta p_w$ [kg/h]/[kPa]	$\begin{array}{c} Q_k{}^1 \\ [W] \end{array}$	Q _P ² [W]
60	150	21	27	20	34	28				340	200
60	250	23	29	20	39	33				390	200
80	150	23	29	27	38	32				380	270
80	250	26	32	27	44	37				440	270
100	150	28	34	33	43	36	•	150/10	150/6	430	330
100	250	30	36	33	49	41	260	150/10	150/6	490	330
120	150	32	38	40	47	39				470	400
120	250	34	40	40	54	45				540	400
140*	150	35	41	47	51	43				510	470
140*	250	37	43	47	58	49				580	470
Size 1		- 4					a 2)				
V _P m ³ /h]	∆p [Pa]	$L_{A18}^{4)}$ [dB(A)]	$\begin{array}{c} L_{wA}{}^{4)}\\ [dB(A)] \end{array}$	${f Q_P}/{\Delta t_P} \ [W/K]$	$\begin{bmatrix} Q_k / \Delta t^{1)} \\ [W/K] \end{bmatrix}$	$Q_h / \Delta t$ [W/K]	Q _{Ek} ³⁾ [W]	w _{ok} /Δp _w [kg/h]/[kPa]	w _{oh} /Δp _w [kg/h]/[kPa]	Q _k ¹ [W]	Q _P ² [W]
80	150	22	28	27	45	36			80/16 180/10	450	270
80	250	25	31	27	51	43				510	270
100	150	24	30	33	52	44				520	330
100	250	27	33	33	59	50				590	330
120	150	28	34	40	56	47	325	180/16		560	400
120	250	31	37	40	63	53	525	100/10	100/10	630	400
140*	150	32	38	47	60	51				600	470
140*	250	35	41	47	68	58				680	470
160*	150	35	41	53	65	55				650	530
160*	250	38	44	53	73	62				730	530
non Prir Wat A Acc	-conc nary a ter sup oustica	lensing op air temper oply temp al data for	peration (i ature: 16 ^o erature 70 plastic n	6°C, induction induction air ten °C, air inlet ten 0°C, air inlet te ozzles; alumini custischen Grür	mperature nperature: emperature ium nozzle	may van 26°C e: 20°C es: sound	ry from an l power le	mbient air ten evel + 3 dB		б°С,	
Vp -	- prim	arv air flo	ow rate (=	±10%)		Δt	- tempe	erature differe	nce between		
	-	-	of prima	<i>,</i>				tion air tempe			ng
-	- soun	d pressur	e level	-		0		eat exchanger			
_				18 m ² Sabine		Wok		ard water flow			
-wA -		d power l h plastic r	level $\pm 3 $ on $zzles)$	lB(A)		wok Woh		ard water flow		·	
<u>)</u> р -	`	-	ity prima	ry air		Δp _w	- water	-side pressure	loss		
	- temp	perature d	ifference d primary	between							
Q _k -	- seco		oling capa								
0	heat		:								

- heating capacity Qh

Induction Unit for Installation in Access Floors Type HFB-Z Selection

© LTG Aktiengesellschaft · Grenzstraße 7 · D-70435 Stuttgart · 🕿 +49 (0711) 8201-180 · Fax -720 Internet: http://www.LTG-AG.de · E-Mail: info@LTG-AG.de · Printed in Germany · Former editions are invalid · Subject to technical modifications.

Bodenind-E-TP (09/07)


Induction Unit for Installation in Access Floors Type HFB

Installation

The compact design allows for installation of the unit between floor supports. Height-adjustable feet ensure a precise alignment of the unit.

For air connection use one of the two connecting sockets on the unit's backside. The control valve compartment and the water connection are located on the unit's left side. Bushings for water connection hoses are provided on the unit's rear panel, on the left hand side.

The ventilation grille is designed to be flush-mounted to the floor. It is foot traffic resistant without the need for any additional cross members.

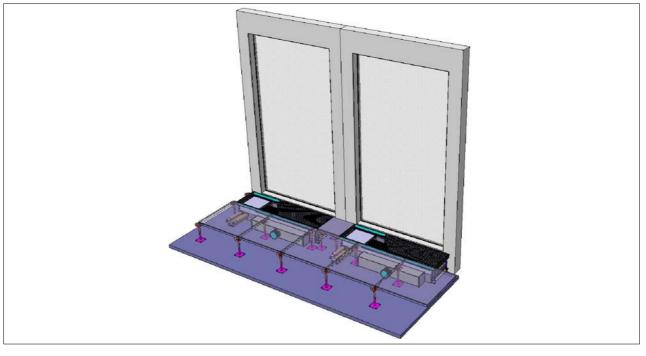
Induction Unit Type HFB - with ventilation grille

Installation Sequence

- Set the unit with insulating strips directly on the facade.
- Height adjustment and exact positioning of the unit through adjustable feet.

- If required, use e.g. a PU adhesive to fix the unit feet in order to avoid accidental movement.
- Adjustment via damper blade and pressure measurement.
- Set the feet for floor panels and install the floor panels so that a direct contact with the unit is ensured.
- Complete electrical and water connections. Water connections must be flexible and strainless.

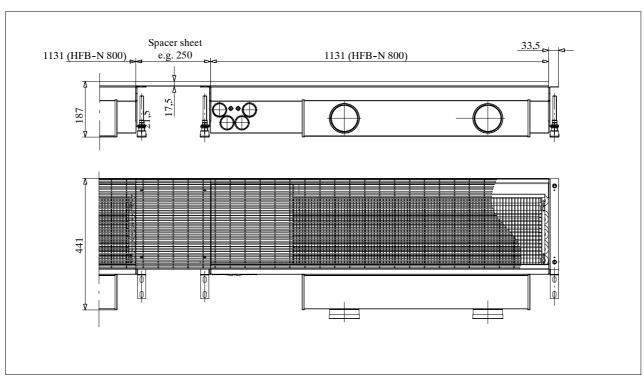
Special Versions / Accessories


- Control valves optionally with continuous, thermal or 3-position actuator.
- Insulated flexible hoses with safe quick-release connectors on the heat exchanger and integrated air-relief valves.
- Solid, foot traffic resistant ventilation grille not requiring any additional cross members, with blades parallel to the facade. Aluminum or stainless steel, inserted into the floor pan from above. The use of grilles of other manufacturers requires LTG permission in order to ensure a proper function of the entire system.
- Primary air flow damper for air flow balancing to obtain a ratio of up to about 1:1.5.

Control

Water-side control through control valves.

Maintenance


All components are located within a sheet steel pan and are easily accessible from above for maintenance, inspection and cleaning.

Induction Unit Type HFB - Installation between floor supports

© LTG Aktiengesellschaft · Grenzstraße 7 · D-70435 Stuttgart · 🕿 +49 (0711) 8201-180 · Fax -720 Internet: http://www.LTG-AG.de · E-Mail: info@LTG-AG.de · Printed in Germany · Former editions are invalid · Subject to technical modifications.

Induction Unit for Installation in Access Floors Type HFB-N, HFB Installation example

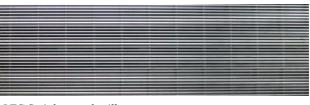
Installation example: continuous grille on the facade

Installation in line

In order to produce a "continuous effect" grille, black coated spacer sheets are fixed between the units.

If the space between units is greater than 400 mm or if end pieces are used, additional supports will be required to provide more stability.

If the space is 600 mm or greater, the use of an empty tray is recommended for stabilization.


The LTG roller grilles may also be used to create cutouts for columns or mitre edges.

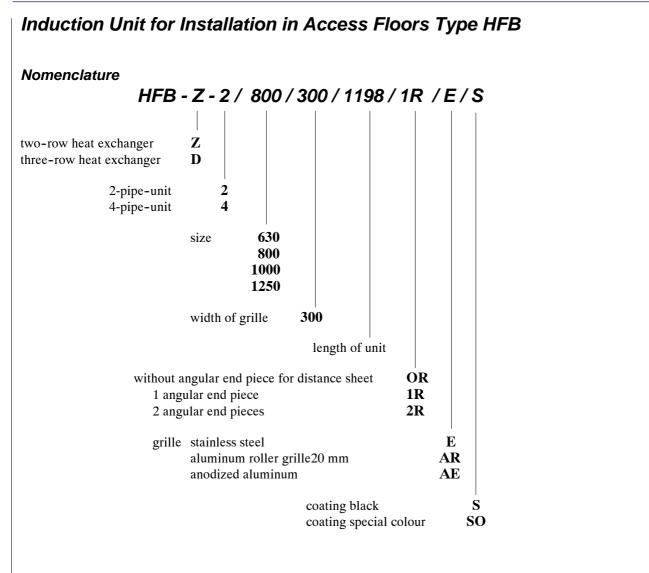
Grille load capacity

The 3 variants of foot traffic resistant LTG grilles offer the following static load capacities:

- Stainless steel grille	1500 kg/m ²
- Aluminium roller grille	1600 kg/m ²
- Aluminium linear grille	2000 kg/m^2

- Aluminium linear grille Other capacities on request

LTG Stainless steel grille



LTG aluminum roller grille

-i		
		<u> </u>
 _		
	10 August 10	1
 		<u> </u>
_		
		1
		<u> </u>
 	+	
		

LTG aluminum grille

Specification and Schedule of Prices

Induction Unit for Installation in False Floors Type HFB

Edition 10.7.2008 / page 1

	Description	Unit price in €	Total p in €
Induction	unit for 2- and 4-pipe systems for water-side control by valves Type HFB (heating and cooling)		
	<u>t with</u> a multi-row heat exchanger with separate water circuits for leating (2- and 4-pipe system), <u>consisting of:</u>		
torsion-res thickness: erate high valve hous	or free installation in floor cavities or false floors, consisting of a istant pan of galvanized sheet steel, surface coated, sheet steel 1.5 mm, with reinforced side edges, sheet thickness 2.5 mm to tol- static loads (sound insulation index (RW) > 25 dB), with separate ing and supporting profile on the face to accept ventilation grille, foot traffic sound insulation.		
unit width,	ic resistant ventilation grille , made of aluminium over the entire width 300 mm, serving as an inspection opening. Thus, all compo- asily accessible from above for maintenance.		
- Supportin	g feet, with foot traffic insulation, 4 pieces, height adjustable.		
	or water hoses exiting the unit tray in direction of room with edge optimized for high cross-talk attenuation.		
copper tub high natura	anger with 2 separate water circuits, consisting of smooth 12 mm es with pressed-on aluminum fins, for a high caloric output and al convection. pressure up to 12 bar. Water-side connection of quick release cou-		
- Control va	lve housing on the unit's left hand side.		
- Air outlet	duct close to the facade for better facade shielding.		
for inducti	ir nozzle box with replaceable primary air plastic nozzles, designed on with a high level of performance, a low flow noise and a strong of the primary sound.		
Width x heig	tensions (aluminium linear grille): ht = 308 (441) mm x 191 mm may vary depending on variant)		
Sizes: o 630	o 800 o 1000 o 1250		
Manufacture Series: Type:	er: LTG Aktiengesellschaft Induction units HFB		
	-2-		
1	—	1	1

Specification and Schedule of Prices

Induction Unit for Installation in False Floors Type HFB

Edition 9.11.2007 / page 2

v		
	Variants:	
0 0 0 0 0	 Mixed displacement air insert MQ. Spreading vanes to improve indoor air flow, integrated in the discharge section to produce a combined mixed/displacement air flow at low air speed, for increased cooling output and reduced temperature layer formation in the occupied zone. Stainless steel grille Aluminum - Roller grille 	
A	Accessories/special version (optional, at extra charge):	
0	(Oxiblock, PE), with stainless steel braiding, quick release coupling on one side, other side optional, length: 500 mm, without insulation for hot water up to supply temperatures of 50 °C, operating pressure 10 bar	
0	(Oxiblock, PE), with stainless steel braiding, quick release coupling on one side, other side optional, length: 500 mm, with insulation for cold water	
0	or standard hose: Flexible hose, (EPDM-core), with stainless steel braiding, quick release coupling on one side, other side optional, length: 500 mm,	
0	without insulation for hot water	
0	2 valves with thermoelectrical actuator	
0	2 valves with 3-position actuator	
0	Plug-in connections with 1/2" internal thread for direct valve connection	
	-3-	

Specification and Schedule of Prices Induction Unit for Installation in False Floors Type HFB

Edition 9.11.2007 / page 3

Technical Specification

Primary air pressure	[Pa]
Primary air flow rate	[m ³ /h]
Sound power L _{WA}	[dB(A)]
Sound pressure level at 18 m^2 Sabine L_{pA}	[dB(A)]

Cooling mode

Induction air temperature	[°C]	
Primary air temperature	[°C]	
Water supply temperature	[°C]	
Cooling capacity	[W]	

Heating mode

Natural convection

Induction air temperature	[°C]	
Water supply temperature	[°C]	
Heating capacity	[W]	

[W]

Comfort Air Technology

Air-Water Systems Air Diffusers Air Distribution

Process Air Technology

Fans Filtration technology Humidification Technology

Engineering Services

Laboratory Test / Experiment Field Measurement / Optimisation Simulation / Analysis R&D / Start-up

LTG Aktiengesellschaft

Grenzstraße 7 70435 Stuttgart Germany Tel.: +49 711 8201-0 Fax: +49 711 8201-720 info@LTG.de www.LTG.net

LTG Incorporated

105 Corporate Drive, Suite E Spartanburg, SC 29303 USA Tel..: +1 864 599-6340 Fax: +1 864 599-6344 info@LTG-INC.net www.LTG-INC.net